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THE EFFICIENCY OF HIGH ORDER TEMPORAL SCHEMES
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Abstract

A comparison of four temporal integration tech-
niques is presented in the context of a general pur-
pose aerodynamics solver. The study focuses on the
temporal e�ciency of high-order schemes, relative
to the Backward Di�erentiation Formulae (BDF2)
scheme. The high order algorithms used include the
third-order BDF3 scheme, the fourth-order Modi�ed
Extended BDF (MEBDF4) scheme, and the fourth-
order Explicit, Singly Diagonally Implicit Runge-
Kutta (ESDIRK4) scheme.

Design order convergence is observed for all
schemes. Speci�cally, second-, third-, and fourth-
order accuracy for the BDF2, BDF3 and MEBDF4
schemes, while the ESDIRK4 scheme converges ini-
tially at a fourth-order rate but the order reduces
down to third-order at high precisions. Very little
advantage is observed with high-order schemes over
the popular BDF2 scheme at accuracy tolerances of
10�3 or less. The MEBDF4 scheme is a possible
practical alternative to BDF2 in aerodynamic appli-
cations at high precision levels.

Introduction

The computer resources available in the next
decade will provide the opportunity to do routine
3-D computations of time � dependent 
ows around
complex con�gurations. These computations on
large grids are computationally intensive, and re-
quire the most e�cient time integration techniques.
The temporal algorithm currently in vogue in the
aerodynamics community is the second-order accu-
rate Backward Di�erentiation Formulae (BDF2). It
is a multi-step scheme that discretely moves the so-
lution forward in time. The BDF2 scheme is linearly
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stable for arbitrary time-step size (A-stability) and is
reasonably robust for nonlinear equations. More so-
phisticated temporal algorithms are currently avail-
able in the ODE literature - most notably algorithms
that achieve accuracy levels higher than second-
order, while maintaining A-stability.

A primary application for time-dependent meth-
ods is in the integration of complex turbulence mod-
els. A class of composite models has been devel-
oped recently for unsteady 
ows. These compos-
ite models attempt to blend the unsteady capabil-
ities of LES with a method having grid require-
ments that are more like those conventionally used
in Reynolds-averaged Navier-Stokes (RANS) calcu-
lations. A composite model typically involves a
RANS turbulence model and RANS-type grid in re-
gions near solid surfaces, where the resolution of tur-
bulent eddies would require exceptionally �ne grid
resolution. A variety of di�erent composite models
have been proposed in the last few years. Perhaps
the most thoroughly tested has been the Detached
Eddy Simulation (DES) model of Spalart34. In its
most common form, the DES model is implemented
in combination with the Spalart-Allmaras (SA) tur-
bulence model, although recently DES results with
Mentor's30 SST model have also been published. All
composite models require temporal simulations in
three spatial dimensions and are extremely expen-
sive to implement.

An obvious question regarding temporal integra-
tors in the context of time dependent turbulence
models (composite or otherwise) is \What is the
most e�cient integration technique"? Perhaps dif-
ferent optimal schemes exist for di�erent codes or
applications. Previous work began the investigation
of the utility of high-order temporal techniques. Bijl
et al. 4, and later Jothiprasad et al. 19 show that
the ESDIRK4 scheme 21 is a factor of two more ef-
�cient at achieving engineering accuracy, compared
with the BDF2 scheme on several laminar computa-
tions. Unfortunately, ESDIRK schemes show order-
reduction in the context of turbulent 
ows 7. How-
ever, the degree to which order reduction a�ects ef-
�ciency is currently unknown for turbulent 
ows.

The ultimate goal of the current e�ort work is
implementation of an e�cient and automated tem-
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poral integration package for a general purpose 3-D
unstructured aerodynamic solver. This package will
seamlessly adopt the optimal integration algorithm,
and automatically adjust the integration step-size to
maintain a user de�ned accuracy tolerance on high
Reynolds number unsteady 
ows. Automated in-
tegration software has existed in various forms for
three decades. The �rst widely available multi step
integration library was that developed by Gear,14

later modi�ed and improved by Hindmarsh,18 result-
ing in the LSODE family of codes. Other variants
have proliferated over the past two decades to ac-
count for the de�ciencies of the original approaches
(see VODE 5).

Automated integration control is complex. Em-
bedded logic must control 1) error estimation and
step-size prediction, control and rejection, 2) iter-
ation termination strategies, 3) dense output used
to predict starting values for the modi�ed Newton
process, 4) the timely evaluation of the Jacobian ma-
trix, and 5) re-factorization of the iteration matrix.
See, de Swart et al.12, for a typical application of
these principles in the PSIDE software, applied to
a four-stage implicit Runge-Kutta method (Radau
IIA17).

Unfortunately, the control logic used in other gen-
eral purpose integration software is only partially
applicable to our setting. For example, modi�ed
Newton methods relying on full Jacobian informa-
tion, are impractical due to storage limitations on
ODE systems of dimensionality 106 � 108. Similar
di�culties arise in trying to devise optimal conver-
gence strategies with convergence rates in the range
0:1 � �op � 0:315; 12. Asymptotic convergence rates
in this range are sometimes impossible with current
state-of-the-art aerodynamic solver technologies at
any �t. It is inevitable that portions of the time
integration machinery must be adjusted speci�c to
our application.

The �rst step in the development of an auto-
mated integration package is identi�cation of can-
didate schemes through tests on realistic problems.
Four integration schemes are chosen to begin this
process. They are the BDF2, BDF3, MEBDF4 and
ESDIRK4 schemes. We consider the MEBDF family
of schemes as a possible alternative to the ESDIRK
schemes. The MEBDF schemes do not su�er from
the order reduction and thus should be more suitable
for turbulent applications.

A basic control strategy is developed for all four
schemes that allows each to run automatically in
constant time-step mode. The accuracy, e�ciency
and convergence characteristics of these schemes are
compared on representative 
ows at low to moder-

ate Reynolds number, and a variety of spatial grid
resolutions. The target accuracy for this study is
the range 10�2 � 10�3, and shall be refer to as \en-
gineering accuracy". A detailed discussion follows
the raw data to help focus future e�orts toward the
development of an automated integration package.

Temporal Discretization

Consider the integration of the system of ordi-
nary di�erential equations (ODEs) represented by
the equation 16; 17

dU

dt
= S(U(t)) :

In the present case, the vector S results from the
semi-discretization of the turbulent equations of

uid mechanics, containing primarily convection,
and di�usion terms. Most typical turbulent aero-
dynamic 
ow applications are characterized by:

� Large system dimensionality: 105 � 108

� Hyperbolic - parabolic character

The responsibility of the integrator is to integrate
any S with which it is provided. Trouble often
arises when the Jacobian of S, @S=@U, has a range
of large eigenvalues. This may give rise to sti�-
ness. Nontrivial near-wall sti�ness is common in
practical engineering problems due to grid cluster-
ing that increases with Reynolds number. A useful
de�nition for sti�ness states that a problem is sti�
when the largest scaled eigenvalue of the Jacobian,
jjz = �(�t)jj, contained in the complex left-half-
plane (LHP) becomes much greater than unity. The
resulting sti�ness is then governed by both the Jaco-
bian and the chosen time-step. Ideally, the time-step
is selected solely based on error considerations and a
good method simply executes this step-size in a sta-
ble and robust fashion. Time integration methods
that do not amplify any LHP scaled eigenvalues are
called A-stable. While A-stability is generally nec-
essary, it is often not su�cient. We further demand
that all eigenvalues, jjz ! �1jj, be completely
damped. Hence, in the paper we consider only L-
stable methods and the somewhat less desirable and
less stable L(�) methods. Making this choice not
only avoids numerical instability but also facilitates
convergence of the nonlinear equation solver.
Popular implicitODE integration methods are de-

�ned at both extremes by multistep or multistage
methods. Whole classes of schemes, however, com-
bine both approaches in an attempt to correct the

aws of either the multistep or multistage methods.
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Implicit multistep BDF methods compute each U-
vector update to design order of accuracy using one
nonlinear equation solve per step. Unfortunately,
they are not A-stable above second-order. Addi-
tionally, they are not self-starting and have dimin-
ished properties when used in a variable step-size
context. Practical experience indicates that large-
scale engineering computations are seldom stable if
run with BDF4 29. The BDF3 scheme, with its
smaller regions of instability, is often stable but di-
verges for certain problems and some spatial opera-
tors. Thus, a reasonable practitioner might use the
BDF2 scheme exclusively for large scale computa-
tions due to its L-stability rather than L(�)-stability.
This explains why BDF2 is one of the current meth-
ods of choice in the computation of large scale en-
gineering 
ows. Practical RK methods such as ES-
DIRK methods can be made arbitrarily high-order
while retaining L-stability but possess intermediate
U-vectors with reduced order of accuracy and lesser
stability. This reduced stage order may give rise to
order reduction phenomena in the presence of sub-
stantial sti�ness. ESDIRK schemes with s stages
require (s-1) nonlinear equation solves per step. Al-
though it is possible to achieve progressively higher
stage-order methods such as the Radau IIA family,
this is not likely to be practical in the current con-
text. There is much less experience with implicit RK
methods than BDF methods in the computation of
large-scale engineering 
ows.
The general formula for a k-step, order-k, BDF

scheme can be written as

U(n+k) = �
k�1X

i=0

�iU
(n+i) + (�t)�kS

(n+k):(1)

At each time-step the BDF formulae involve the
storage of k + 1 levels of the solution vector U, and
the implicit solution of one set of nonlinear equa-
tions. Stability diagrams for these methods may be
found in Hairer and Wanner 17. At order k > 2 one
�nds an unstable zone for scaled eigenvalues in the
complex LHP. At orders f1; 2; 3; 4; 5; 6g the methods
are L(�)-stable where � is given by f90o; 90o; 86:03o;
73:35o; 51:84o; 17:84og. For these same orders, �k
is given by f1; 2=3; 6=11; 12=25; 60=137; 60=147g.
Smaller values of �k facilitate iterative convergence
of the nonlinear algebraic system at each step.
ESDIRK methods 21; 23 are implemented as

Uk = Un + (�t)
kX

j=1

akjS (U
j) ; k = 1; s

Un+1 = Un + (�t)
sX

j=1

bjS (U
j) (2)

Ûn+1 = Un + (�t)
sX

j=1

b̂jS (U
j);

where s is the number of stages, akj are the stage

weights, bi and b̂j are the main and embedded

scheme weights. The vectors U and Û are the
pth-order and (p� 1)th-order solutions at time level
n + 1. The vector Û is used solely for estimating
error and is virtually free. The Butcher tableau for
sti�y-accurate ESDIRK schemes (here represented
with s = 5) takes the form

0 0 0 0 0 0
c2 a21 
 0 0 0
c3 a31 a32 
 0 0
c4 a41 a42 a43 
 0
1 b1 b2 b3 b4 


b1 b2 b3 b4 


b̂1 b̂2 b̂3 b̂4 b̂5

where ci are the abscissae that denote the point in
the time, t+ci�t, where the stage i is evaluated. ES-
DIRK schemes di�er from traditional SDIRK meth-
ods (see xIV.6 in Hairer and Wanner 17) by the
choice a11 = 0 which permits stage-order two meth-
ods. The sti�y accurate assumption (asj = bj)
makes the new solution Un+1 independent of any
explicit process within the integration step. The
Butcher tableau for the ESDIRK4 scheme is in-
cluded in the Appendix.
To increase the stability of the BDF methods,

Cash 8; 9 proposed combining the multistep and mul-
tistage ideas and thus developed the Extended Back-
ward (EBDF) and the Modi�ed EBDF (MEBDF)
schemes. The MEBDF family of schemes involve
three stages to advance the solution one time-step.
The �rst two stages are built from existing p� 1th-
order BDF formulas, while the last stage combines
the two previous BDF results into a pth order so-
lution. Note that the second BDF stage repre-
sents a \super-future" point and substantially con-
tributes to the A-Stability of the method. At orders
f1; 2; 3; 4;5;6g the methods are L(�)-stable where �
is given by f90o; 90o; 90o; 90o; 88:36o; 83:07og. The
machinery involved with implementing the MEBDF
algorithm is nearly identical to that involved in
the BDF formulations. An added advantage of the
MEBDF schemes is that very accurate solution data
is available on the �rst and third stages, based on
previous information. This information can be used
to provide the starting guess for the nonlinear inter-
action, and to establish time-step error estimates.
The second stage typically uses the trivial guess as
the starting point for the nonlinear iteration and no
error estimate is made.

3



Numerics

The target for our automated integration pack-
age is the 3-D unstructured- aerodynamics solver
FUN3D3 and its replacement solver, the HEFSS
code that is currently being upgraded 22; 1. The
HEFSS solver utilizes mixed 3D unstructured ele-
ments to solve the turbulent equations of 
uid me-
chanics. A variety of algebraic solvers including
multi-grid are used to converge the governing equa-
tions. Unfortunately, this platform is not currently
available, so we begin our study with the 2D prede-
cessor of FUN3D.

The FUN2D 
ow solver is a node based, implicit,
upwind 
ow solver used for computing 
ows around
airfoil con�gurations discretized with an unstruc-
tured grid.2 The governing equations are the time-
dependent Reynolds-Averaged Navier-Stokes equa-
tions in conservation-law form. The inviscid 
uxes
are obtained on the faces of each control volume by
using the 
ux-di�erence-splitting (FDS) technique
of Roe.32 A node-based algorithm is used in which
the variables are stored at the vertices of the mesh
and the equations are solved on non-overlapping con-
trol volumes surrounding each node. The viscous
terms are evaluated with a �nite-volume formulation
that results in a central-di�erence-type scheme. The
Spalart-Allmaras33 (SA) turbulence model is used in
this investigation and all computations assume fully
turbulent 
ow.

A two level iteration is used to achieve conver-
gence of the discrete algebraic equations at each
stage/time-step. The outer iteration is an modi�ed
Newton method and employs a �rst-order Van Leer
35 Jacobian (LHS) driving the second-order residual
vector (RHS). The inner iteration employs a red-
black Gauss Siedel point-implicit algorithm to solve
the equations at each step of the outer iteration.
Fifteen inner sub-iterations are used in all cases in
this study. The SA turbulence model equations are
weakly coupled to the hydrodynamic equations via
the outer loop iteration.

Error Estimation

A major component in the development of au-
tomated integration software is the development of
reliable local error estimators. Error estimation is
accomplished by comparing two solutions of di�er-
ent orders (Un+1 and Ûn+1) at the same time-
step. For reasons of e�ciency, the auxiliary solution
Ûn+1 should be available at little additional cost.
For example, in ESDIRK schemes (see eqn. 3), as
well as MEBDF 9 schemes, both Un+1 and Ûn+1

are constructed from available data. The di�erence
kUn+1 � Ûn+1k is proportional to the truncation
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Figure 1. Cycle variation of predicted temporal

error as calculated with MEBDF4.

error of the lower order formula Ûn+1. The estimate
predicts the magnitude of the error in the solution,
and gives insight into its overall quality. Frequently,
linear and nonlinear instability can be predicted by
the estimator well before the simulation diverges.
Figure (1) shows the error estimate (MEBDF4) for

various �t. The test problem is for periodic shed-
ding from the turbulent circular cylinder. Although
not shown, the estimates are accurate to the correct
order based on grid-converged data. The temporal
error estimate varies by approximately a factor of
three over one shedding cycle. Adjusting the time-
step by a factor of 1:5 over the course of the cycle
would result in nearly uniform temporal error. Vari-
able time-stepping for this mildly unsteady cylin-
der application would be relatively simple even with
multi-step schemes.
A rudimentary error estimator is developed for the

BDF2 and BDF3 schemes. The leading order trun-
cation term for the second-order formula is the third
derivative (�t)2 @

3U
@t3

, and can be approximated by
the di�erence between second- and third- order tem-
poral formulas. For example, the second- and third-
order BDF integration formulas written for variable
time-step mode can be expressed as

@U

@t
= a+1 Un+1 + a+0 Un + a�1 Un�1 + a�2 Un�2

with

a2+1 =
(h1 + 2h0)

(h0(h1 + h0))
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a2+0 =
�(h1 + h0)

(h0h1)

a2�1 =
h0

(h1(h1 + h0))

a2�2 = 0

for BDF2 and

a3+1 =
(h1h2 + 2h0h2 + h12 + 4h0h1 + 3h02)

(h0(h1 + h0)(h2 + h1 + h0))

a3+0 =
�(h1h2 + h0h2 + h12 + 2h0h1 + h02)

(h0h1(h2 + h1))

a3�1 =
(h0h2 + h0h1 + h02)

(h1(h1 + h0)h2)

a3�2 =
�(h0h1 + h02)

(h2(h2 + h1)(h2 + h1 + h0))

for BDF3, respectively. The time-steps h0, h1 and
h2 are given by h0 = tn+1 � tn, h1 = tn � tn�1,
and h2 = tn�1 � tn�2. Thus, the error estimator
for the BDF2 scheme is

�2 = k(
@U

@t
)
3
� (

@U

@t
)
2
k

The error estimate for the BDF3 scheme is taken as
�3 = �2h0. Note that more sophisticated estima-
tors are used in general purpose BDF solvers. The
CVODE11 code uses predictor-corrector di�erences
for example. The present estimator is su�cient for
the purpose of this study. In future work, the BDF
estimator will be enhanced to be compatible with
more sophisticated control strategies.
The MEBDF4 scheme uses as an error estimate

the di�erence between the solutions obtained on the
�rst and third stages respectively. The �rst stage
is a third-order estimate of the solution at the new
time. The third stage is the �nal solution, and is
fourth-order accurate in time. The di�erence is pro-
portional to �t4 and is an extremely good estimate
of error. An additional error estimate is available
by comparing the solution at the second stage of the
previous time-step, with the solution at the end of
the �rst stage. This estimate compares two third-
order formulas, and is also very accurate.
The Runge-Kutta scheme uses the di�erence be-

tween the main and the embedded solution for the
error estimator. (See equation (3)) for the main and
embedded formulas and Kennedy and Carpenter21

for the coe�cient values. In all four temporal in-
tegration formulas, the spatial surface area (volume
in 3D) of integration is included in the norm. This

scales the estimate in proportion to the local volume
size.

Termination Strategy
An accurate error estimate can also be used to

automate the termination strategy of the nonlinear
iteration. Two competing components of temporal
error are the truncation and algebraic errors. Trun-
cation error is related to �t and the order of ac-
curacy p, while algebraic error is the residual error
generated each time-step by approximately solving
the algebraic system. The local temporal error is
the sum of the two components. To see full design
order from the temporal scheme, the algebraic er-
ror must be driven below the truncation error at
each time-step. This requires an accurate measure
of truncation error, and must be provided by the
error estimator.
The iteration termination strategy is complicated.

An insu�cient number of iterations on any time-step
can destroy the formal solution accuracy, while ex-
cessive iterations decrease the e�ciency. Our expe-
rience indicates that design-order temporal conver-
gence is achieved by maintaining a tolerance ratio of
10�3 � T � 10�1. Here T is de�ned as the ratio of
nonlinear algebraic error to predicted temporal inte-
gration error at each time-step (or stage). Algebraic
error for the nonlinear iteration is based on the L1
norm of the density residual. The wide range for T
results from the variety of error estimators used in
the di�erent algorithms.
Several preliminary tests determine the largest

value of the parameter T that still achieves design
order accuracy of each method. All calculations are
run in �xed time-step mode and terminated when
the tolerance ratio is met. Larger values of T re-
sult in sporadic convergence results as the algebraic
error disrupts each method's design order conver-
gence slope. The test case used to train the termi-
nation strategy is the turbulent circular cylinder at
a Reynolds number of Re = 104 and a Mach number
of Ma = 0:2. Table (1) shows the experimentally
determined values of the parameter T .
Table 1: Upper bounds on the tolerance ratio

parameter T .

Scheme T
BDF2 1/20
BDF3 1/500
MEBDF4 1/50
ESDIRK4 1/50

Note that choosing the time-step based on accu-
racy considerations alone may not be the most e�-
cient strategy for a temporal calculation. Decreas-
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ing the time-step could greatly increase the conver-
gence rate of the nonlinear algebraic system, thus
increasing e�ciency. Gustafsson and S�oderlind 15

devised optimal criteria for adjusting �t. They as-
sumed that either �xed point iterations, or modi�ed
Newton iterations is used for solving the algebraic
system. The time-step is adjusted so that the it-
eration convergence rate approximately equals the
optimal value. Typical CFD algebraic solvers fall
somewhere between �xed point and modi�ed New-
ton iterations. Additional work is needed to re�ne
controllers in the context of CFD time-dependent
solvers, and is the subject of future work. All calcu-
lations performed in this work (except those needed
for startup) use a constant time-step.

Results

ODEs

Cash 10 updates the considerable progress made
through the mid 90's for method of lines algorithms
applied to sti� oscillatory problems. His study
focuses on the BDF, MEBDF, and Runge-Kutta
classes of schemes. The model problem Cash uses
to compare the e�ciencies of the di�erent schemes
is the sti�, damped oscillatory problem of Enright
et al.13. See Cash 10 for a problem description, but
note that oscillatory in this context refers to com-
plex eigenvalues. This problem highlights the inad-
equacies of the BDF class of schemes. It is designed
with complex eigenvalues that lie near the imaginary
axis in the unstable lobes of the third and higher or-
der BDF schemes. To maintain stability, all BDF
schemes of accuracy greater than two must be run
with an explicit time-step. Thus, the BDF family
of schemes is not e�cient unless extremely coarse
tolerances are desired, and BDF2 can be used.
Unfortunately, Cash's study is only partially ap-

plicable to the problems in 
uid mechanics. The
Navier-Stokes equations govern the time variation
of viscous 
uids. These 
ows are usually oscillatory
and exhibit considerable sti�ness. In addition, the
eigenvalues of the linearized equations often are near
the imaginary axis. A notable di�erence, however,
is the precise location of the complex eigenvalues.
Frequently the BDF3 scheme is stable on realistic
problems with no reduction in time-step, making it
an extremely e�cient algorithm for engineering cal-
culations.
We now compare the behavior of the candidate

schemes on a model problem that is simple enough
to be thoroughly tested. Rather than use Enright's
problem, we choose van der Pol's equation as our
test vehicle, because it does not signi�cantly penalize
the BDF3 scheme. Van der Pol's equation is used in

the work of Kennedy and Carpenter21 to determine
the relative merits of integration schemes, because
of its challenging character. See Hairer17 pages 402-
403 for the exact problem speci�cation and initial
conditions. Fixed time-step mode is used in all cases
to allow direct comparison with the results in Hairer.

Van der Pol's equation is a two variable system
that separates into a non-sti� and sti� variable, with
the non-sti� di�erential variable being the variable
of interest. Figure (2) shows work-precision plots
for the di�erential (non-sti�) and algebraic (sti�)
variables in van der Pol's equation. Work is de�ned
by the total number of function evaluations. All
plots show the solution accuracy for a sti�ness of
� = 10�3. This value of the sti�ness parameter
� is chosen from the range 10�8 � � � 1, and
is representative of the entire range. The nonlin-
ear system is solved at each time-step using either
Newton's method or Jacobi iteration and is driven
to machine precision. Newton's method requires be-
tween 5 and 11 iterations to reach convergence, mak-
ing work nearly proportional to time-step. Jacobi
iteration required as few as 5 iterations to converge,
but varied noticeably with sti�ness � and time-step.
Runge-Kutta would not converge for � = 10�8 with
Jacobi iteration.

The theoretical convergence rate of each scheme is
presented in Table (2). The theoretical rates are con-
sistent with the numerically determined rates shown
in �gure (2). (The di�erential and algebraic con-
vergence rates shown for MEBDF4 are speculative,
based on the similar analysis presented in Hairer17.)
The �rst two plots show the convergence of the non-
sti� and sti� variables, respectively as a function
of work. Newton's method is used to drive the al-
gebraic equations to zero. The convergence rate of
BDF2, BDF3 and MEBDF4 is independent of the
sti�ness parameter � for both the non-sti� and sti�
variables. The ESDIRK4 scheme order reduces due
to the sti�ness in the problem. The non-sti� di�er-
ential variable converges initially at a fourth-order
rate, but abruptly changes to a lesser slope at �ne
tolerances. The sti� algebraic variable order reduces
abruptly at an error of �6 for the ESDIRK4 scheme.
The ESDIRK4 scheme is the most e�cient of the
four candidate schemes in van der Pol's equation,
despite the dramatic order reduction present in the
algebraic variable.

Table 2: Theoretical convergence rates of high-
order schemes.
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Figure 2. Work-precision plots for the BDF2,

BDF3, MEBDF4, and ESDIRK4 schemes.

Top and middle plots show di�erential and al-

gebraic errors converged with Newton iteration.

The bottom plot shows the di�erential error as

converged with Jacobi iteration.

scheme Di�erential Algebraic
BDF2 h2 h2

BDF3 h3 h3

MEBDF4 h4 h4 + �h3

ESDIRK4 h4 + �h3 h4 + �h2

The �rst two work-precision plots of �gure (2) are
idealistic comparisons of the general behavior of the
four candidate schemes. Implicit in the comparison
is similar convergence of the algebraic system, in-
dependent of method, time-step and sti�ness. The
last plot, however, shows the work-precision behav-
ior obtained using Jacobi iteration for the algebraic
system. Inadequate convergence characteristics of
the algebraic solver can have disastrous e�ects on
any temporal algorithm. The Jacobi iteration is far
less e�ective in driving the residuals to zero, and di-
verges in some cases (ESDIRK4 at � < 1:0e�8). Ja-
cobi iteration shifts all curves towards larger values
of work. More instructive, however, is the anomaly
that occurs with the MEBDF4 scheme at high pre-
cision. The slow iterative convergence dramatically
increases the work.
This preliminary study of van der Pol's equa-

tion is used to carefully study the four candidate
schemes in an ideal setting. Unfortunately, it only
begins to unravel the complex work-precision inter-
actions encountered in FUN2D. In closing, e�ciency
is strongly in
uenced by

� Convergence rate of iterative solver

� Stages necessary to implement scheme

� Accuracy per step

A scheme that has desirable accuracy properties may
not be an e�cient solver. This is particularly true for
high-order solvers where huge time-steps are needed
to utilize their high accuracy per step.

PDEs

The van der Pol's equation study compares the nu-
ances of the four candidate schemes in an extremely
clean setting. The present study attempts to estab-
lish on realistic applications, the stability, conver-
gence, and e�ciency of the four schemes. The study
begins by establishing the sensitivities to grid reso-
lution as well as Reynolds number e�ects. A circular
cylinder is used to quantify the sensitivity of tempo-
ral results on varying spatial resolution. Reynolds
number e�ects are studied next, on a circular cylin-
der and a NACA0012 airfoil.
All test cases involve systematic re�nement stud-

ies at each 
ow condition. Each study begins
by advancing the solution at a large relative error
(MEBDF4 with �t = 1 yields an error of 10�4/step
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) for approximately 100 shedding cycles. At this
point the solution is periodic. One hundred steps
are then run at a time-step of �t = 0:01 with
the MEBDF4 algorithm. The three time-plains of
startup data that are written at the end of each run
correspond to �t = 0:01. The stored start-up data is
fourth-order accurate and is obtained on the smallest
time-step used in the simulation, and is used by all
the multi-step algorithms (ESDIRK4 does not need
it) in variable time-stepping mode without loss of
formal accuracy. Finally, the \exact solution" is ob-
tained by running the BDF3 algorithm at �t = 0:01
for 1 1/2 shedding cycles.

Data from each run is processed using the exact
solution data. Error estimates are obtained using L2

and L1 norms over the entire solution �eld. All the
norms reported herein are un-weighted norms and
do not involve geometric information. A compari-
son of area-weighted and un-weighted reveals that
both yield similar results, distinguishable only by a
scaling factor.

Grid dependence

A spatial re�nement study of the circular cylin-
der is performed to provide insight into the in
uence
of space resolution on the performance of temporal
algorithms. An additional objective is determina-
tion of the iteration termination procedure for all
schemes. The termination cuto�s for all schemes
are determined numerically by experimentation.

Three spatial discretizations are chosen for the
grid dependence study. Table (3) presents the grid
nodes, surface nodes and minimum normal wall
spacing for of each of the cylinder grids. All grids
are tailored for the Re = 104 turbulent 
ow regime.
Wall normal spacing is determined based on turbu-
lent boundary layer growth on a 
at plate.

Table 3: Grid information for spatial re�nement
study.

Grid Grid Nodes Surf. Nodes �xmin

Coarse 8716 100 1.80e-3
Medium 30838 200 0.90e-3
Fine 115498 400 0.45e-3

Figure (3) shows a comparison of the Strouhal
numbers on a coarse, medium and �ne grids for the
case Reynolds, and Mach numbers equal 104, and
0:20, respectively. The twenty cycles shown are run
from the periodic initial data stored previously using
a time-step �t = 0:01. All simulations are run with
with MEBDF4 at a time-step of �t = 1=2. The ini-
tial transient in each curve re
ects the discrepancy
between the intrinsic temporal error in the stored
initial data, and the temporal error of the present
calculations. Strouhal number as a function of cycle

C
C C C C C C C C C C C C C C C C C C C CM M

M M M
M M M M M M M M M M M M M M M M

F

F F F F F F F F F F F F F F F F F F F F
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e
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0 5 10 15 200.24

0.245

Coarse
Medium
Fine

C
M
F

Re = 104, Ma = 0.2

Figure 3. Comparison of Strouhal number on the

coarse, medium and �ne grid for a turbulent cir-

cular cylinder at Reynolds and Mach numbers of

104, and 0:20, respectively.

is determined by measuring the time needed to tra-
verse one cycle in the lift variable. Lift equals zero
in each cycle is used as the datum to reference the
beginning and end of a cycle. Cubic interpolation is
used to approximate the time for which lift is zero
in each case.

The Strouhal number variation between all three
grids is approximately one percent. The results ob-
tain on the medium grid represent engineering ac-
curacy of approximately 2 signi�cant digits, and are
a reasonable compromise between accuracy and e�-
ciency. The general guidelines used to establish this
medium grid are used in subsequent cylinder com-
parisons, and those involving the NACA0012 airfoil.

We now turn to temporal accuracy. Figure (4),
shows the nature of convergence for the BDF2,
BDF3, MEBDF4 and ESDIRK4 schemes on the
coarse, medium and �ne grids, respectively. Plotted
is the L2 convergence of the density �eld. The time
interval is 30 time units, or about one and one half
shedding cycles. The exact solution is determined
from a BDF3 run at a time-step of �t = 0:01,
and is accurate to approximately 7 signi�cant digits
throughout the density �eld. Plots of the L1 con-
vergence of the density �eld show the same qualita-
tive behavior, with the absolute level of error shifted
up by about two orders of magnitude. Note that for
large time steps (�t ! 10), all curves asymptote
to the datum Logarithm (Error) � �2. This datum
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is adjustable, and results from the speci�c choices
made in determining the norm. (For example, is
grid volume included in the norm). It is important
to recognize that absolute L2 error is the di�erence
between the plotted result and the asymptotic da-
tum �2. For example, results with accuracy of two
signi�cant digits occur at approximately Logarithm
(Error) � �4. The time-step needed to achieve this
accuracy is approximately �t = 0:1; 0:4; 0:75; 2:0
for BDF2, BDF3, MEBDF4, and ESDIRK4, respec-
tively.

Figure (4) demonstrates the design nature of
the convergence of all four schemes. The BDF2,
BDF3 schemes converge at rates that are extremely
close to 2 and 3, respectively, and are nearly the
same in absolute magnitude. The MEBDF4 scheme
converges at a rate approaching four. The ES-
DIRK4 scheme initially converges at a rate ap-
proaching four. Order-reduction changes the con-
vergence with smaller time-steps to approximately
third-order temporal accuracy.

Verwer36 showed that diagonally implicit Runge-
Kutta (DIRK) schemes order reduce when applied
to method of lines ODEs. His test case includes a
spatial operator that is discontinuous on the scale
of the spatial grid, and produces a stage-order plus
one convergence rate for the DIRK scheme. Note
the coarse to �ne convergence behavior of the ES-
DIRK4 scheme shown in �gure (4). Nearly smooth
convergence pro�les are obtained for the ESDIRK4
scheme on the �ne grid, while sporadic convergence
is experienced on the coarse grid. We speculate that
the smoothness of the spatial operator causes this
variation. The coe�cients on the �ne grid are nearly
smooth, while those on the coarse grid are somewhat
discontinuous.

The design order nature convergence in the pre-
vious resolution study, indicates that the temporal
algorithms appear to be implemented correctly. In
addition, the iteration termination strategy used at
each stage or time-step appears to be adequate.

Figure (5) presents a work-precision study com-
paring all four schemes. Each case covers an accu-
racy range of approximately �ve order of magnitude.
Perhaps the most striking feature about the results
from this study is the close proximity ofALL curves.
The largest variations occur at intermediate preci-
sion on the �ne grid. The largest di�erence between
any of the schemes is less than a factor of three. All
curves vary by less than a factor of 1:5 on the coarse
grid. Results on the medium grid fall between the
coarse and �ne grid results.

More subtle distinctions include the following.
The BDF2 scheme is the most e�cient of the four

schemes at precisions less than two signi�cant digits
(-4 on the plots). The MEBDF4 scheme becomes the
most e�cient at higher precisions. The ESDIRK4
and BDF3 schemes never are as e�cient at any pre-
cision. At high spatial resolution, the the BDF2
scheme is most e�cient up to four signi�cant digits
(-6 on the plot), before being replaced by MEBDF4.
The work-precision behavior of the BDF2 and

BDF3 schemes is counterintuitive. Both are single
step schemes and require the same number of steps
to traverse the time interval. The BDF3 scheme is
more accurate, thus implying that it will be more
e�cient. The perplexing BDF2/BDF3 results in �g-
ure (5) stem from the constant time-step controller.
Algebraic error is always driven below truncation er-
ror in this study. The initial portion of each itera-
tion converges rapidly, while the asymptotic portion
of the iteration is very slow. The BDF2 scheme ben-
e�ts from the rapid initial convergence of the itera-
tion, while the BDF3 su�ers from the slow asymp-
totic convergence needed to achieve the necessary
tolerance ratio T . The BDF3 results in this study
would improve with a di�erent controller. For exam-
ple, implementing the BDF3 scheme with the control
strategy used in the BDF2 scheme should produce
similarwork-precision plots, although both would be
second-order accurate.
The total work is relatively insensitive to grid res-

olution. (Note that work is de�ned as the number of
total residual evaluations, not CPU time). The �ne
resolution cases converge in about twice as many it-
erations as do the coarse grid cases.
Combining the results from �gures (4) and (5),

leads to the general conclusion that spatial resolu-
tion at this set of 
ow conditions does not strongly
in
uence the temporal algorithmic trends. Thus, fu-
ture studies of other 
ow conditions or geometries,
can focus extensively on only one grid resolution in-
stead of three.

Reynolds Number e�ects
A second objective of the study is to determine

the sensitivity of temporal algorithms to the ef-
fects of Reynolds number. The resolution require-
ments in the near-wall region increase with increas-
ing Reynolds number. Fine grids increase the sti�-
ness sti�ness in the problem. The e�ects of Reynolds
number on the convergence, and e�ciency of tempo-
ral schemes is now presented.
The study begins with the Reynolds number ef-

fects on the circular cylinder. The Reynolds number
is varied over the range Re = 103; 104; 105. The
Mach number is assumed constant atMa = 0:2. Ta-
ble (4) shows the relevant features of the grids used
in this study. The general guidelines used to estab-
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Figure 4. Temporal convergence of BDF2,

BDF3, MEBDF4, and ESDIRK4 on a coarse,

medium, and �ne grid circular cylinder. Test

conditions are Re = 104, and Ma = 0:20.
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lish the coarse and �ne grids are identical to those
used in developing the medium grid in the previous
circular cylinder resolution study.
Table 4: Grid information for cylinder study of

Reynolds number.
Reynolds Grid Nodes Surf. Nodes �xmin

1000 28501 200 5.00e-3
10000 30838 200 0.90e-3
100000 61933 200 0.10e-3

Figures (6) and (7) show the temporal L2 den-
sity convergence and work-precision plots obtained
on the circular cylinder at the three previously
described 
ow conditions. Design order conver-
gence is achieved on the lower two Reynolds num-
ber cases. The absolute level of error increases with
Reynolds number on these two cases. The BDF2
and MEBDF4 schemes are the two most e�cient
schemes, with BDF2 winning at low precision, and
MEBDF4 winning at high-precision. The cross over
point occurs at approximately an accuracy of two
signi�cant digits. (This is at about �4 based on the
asymptotic zero datum of �2). Little variation in ef-
�ciency is evident (perhaps a factor of two) in �gure
(7) on the two lower Reynolds numbers.
Signi�cant iteration

convergence obstacles plagued the Reynolds number
Re = 105 circular cylinder test case. The solu-
tion of the algebraic equations resulting from each
discretization, could not be driven to an arbitrary
level of convergence, regardless of the number of
sub-iterations. This \hanging residual" made it im-
possible to reach the tolerance ratio T necessary to
achieve design order accuracy. The adverse e�ects of
inadequate convergence are shown in the third frame
of �gure (6). The convergence problems are so se-
vere for the Re = 105 case that no work-precision
plot is available for this Reynolds number.
The exact cause of the convergence problems is

unknown for the Re = 105 test case. The turbu-
lence �eld inde�nitely 
ips between two approximate
states after an initial convergence of two to three or-
ders. Perhaps the cause of instability is the drag cri-
sis on the cylinder at approximately this Reynolds
number, combined with the weak coupling of the tur-
bulence model. The original intent of the Reynolds
number study was to include Re = 106. Poor alge-
braic convergence at high Reynolds numbers made
it impossible to continue studying the cylinder.
A second study of Reynolds number e�ects is pre-

sented and provides more conclusive trends for the
temporal integrators study. A NACA0012 airfoil
at 30o angle of attack is used in this study. The
Reynolds number is varied over the range Re =
103; 104; 105. The Mach number is assumed con-
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Figure 6. Temporal convergence for the BDF2,
BDF3, MEBDF4, and ESDIRK4 schemes on

a circular cylinder at Re = 103; 104; 105. The
Mach number is Ma = 0:2.
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Figure 7. Work-precision plots for the BDF2,

BDF3, MEBDF4, and ESDIRK4 schemes on a

circular cylinder at Re = 103; 104. The Mach

number is Ma = 0:2.

Figure 8. Unstructured grid for the NACA0012

test case at a Reynolds number of Re = 103

stant at Ma = 0:3. Figure (8) shows the grid for
the Re = 103 case. Table (5) shows the important
features of the grids used in this study. The general
guidelines used to establish this grid was similar to
those used in developing the medium grid in the pre-
vious circular cylinder resolution study.

Table 5: Grid information for NACA0012 study
of Reynolds number.

Reynolds Grid Nodes Surf. Nodes �xmin

1000 52997 564 5.00e-3
10000 55090 564 0.90e-3
100000 61933 564 0.10e-3

Figures (9) and (10) show the temporal con-
vergence and work-precision plots obtained on the
NACA0012 at the three previously described 
ow
conditions. The convergence plot is based on the L2

error in the density equation, although L1 yields
nearly identical results. (Error increases uniformly
by approximately two orders of magnitude). In
general terms, the absolute accuracy of the density
�elds in the three test cases decreases with increas-
ing Reynolds number. The zero accuracy datum is
again approached asymptotically at a value of ap-
proximately �2. Solution accuracies with two sig-
ni�cant digits are achieved at an error level of ap-
proximately �4.
The NACA0012 temporal convergence and work-

precision plots are qualitatively similar to those pre-
sented in the cylinder spatial re�nement study, and
Reynolds number study. Speci�cally, the design na-
ture of the BDF2, BDF3, MEBDF4, and ESDIRK4
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schemes are evident in �gure (9). Figure (10) shows
that the variation in the e�ciency between schemes
is less than a factor of three. The BDF2 scheme
is slightly more e�cient at low precision, while the
MEBDF4 scheme is more e�cient at high precision.
The BDF3 and ESDIRK4 schemes are never the
most e�cient schemes. The ESDIRK4 scheme de-
viates from the other schemes most signi�cantly in
the low Reynolds number and at low levels of preci-
sion.

Subtle di�erences can be observed in �gures (9)
and (10) , that were not present in �gures (6) and
(7). The nature of temporal convergence in the
NACA0012 study is more sporadic compared with
the previous grid resolution study. The asymptotic
convergence rates are not precisely second-, third-
, fourth- and fourth-order for the BDF2, BDF3,
MEBDF4 and ESDIRK4 schemes, respectively.

A signi�cant (yet not insurmountable) iteration
obstacle plagued the Reynolds number Re = 105

NACA0012 test case. The solution of the algebraic
equations resulting from each discretization, could
not be driven to an arbitrary level of convergence,
regardless of the number of sub-iterations. This
\hanging residual" apparently did not adversely af-
fect the convergence plots shown in �gure (9). The
work-precision plots, however, are directly a�ected
by a \hanging residual". Table (6) shows the test
cases that experienced convergence di�culties. The
algebraic system failed to converge in the indicated
cases for at least one step or stage during the in-
tegration. This data was disregarded in completing
the work-precision plot, and was replaced with the
number of iterations required for the previous alge-
braic iteration.

Table 6: Test cases that failed to converge for
NACA0012 at Re = 105.

�t BDF2 BDF3 MEBDF4 ESDIRK4
0.1 X X
0.3 X
0.5 X
0.75 X
1.0 X
2.5 X X

A deeper understanding of the e�ciency of all four
schemes can be gained by reviewing the number of
iterations necessary to converge the nonlinear equa-
tions at each step. Figure (11) is an iteration-time-
step plot at each of the three Reynolds numbers.
The average number of iterations required to reach
the termination point at each stage (ESDIRK4 and
MEBDF4) or time-step (BDF2, BDF3) is plotted as
a function of time-step. (Note that data was av-

eraged in the Re = 105 case to account for non-
converging iterations).
Figure (11) is the key to the e�ciency of the dif-

ferent schemes. The BDF2 scheme has a very well
behaved iteration behavior. The number of iter-
ations monotonically increases with time-step in a
smooth fashion. The MEBDF4 scheme is nearly as
well behaved, but occasionally experiences conver-
gence problems on the second stage of the method.
(This is the stage for which the trivial guess is used
to start the algebraic iteration).
The BDF3 and ESDIRK4 schemes both experi-

ence convergence problems. They have di�culty
converging at both large time-steps and at small
time-steps, and their e�ciency su�ers accordingly.
Several factors in
uence the convergence rate for
large time steps. The diagonal dominance of the al-
gebraic system decreases with increasing time-step,
making convergence slower. In addition, the trivial
guess used to start the nonlinear iteration becomes
progressively worse as time-step is increased. Fail-
ure to converge for small time-steps is due to in-
adequate convergence of the turbulence model for
the high precision cases. The weak coupling of the
turbulence model becomes an issue as residuals are
driven toward machine precision. The residual ini-
tially converges approximately three to four orders.
It then begins to oscillate between two states and
fails to converge any further. The BDF2 scheme ter-
minations its iteration before convergence problems
are encountered.

Discussion

Design order convergence is achieved for all can-
didate schemes in the FUN2D code. The relative
accuracy of all methods (at a given time-step) is
similar to that predicted in van der Pol's equation.
In practical terms, the BDF2 scheme achieves en-
gineering accuracy for a time-step of �t = 0:1,
which corresponds of approximately 100 time steps
per period. The fourth-order ESDIRK formula-
tion attains a similar accuracy (in spite of order re-
duction) using 10 time steps per period, with �ve
stages per step, yielding approximately 50 time-
samples/period. The high order schemes are able
to achieve solutions with engineering accuracy using
huge time steps. We speculate that new state-of-the-
art general linear methods (GLM) methods6 could
lower this estimate to 30 time-samples/period, an
improvement of approximately O(101=2) over BDF2
temporal accuracy.
High-order formulations su�er in the FUN2D code

from poor e�ciency. The BDF2 scheme is equally
e�cient in achieving the target accuracy levels used
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Figure 9. Temporal convergence for the BDF2,
BDF3, MEBDF4, and ESDIRK4 schemes on

a NACA0012 airfoil at Re = 103; 104; 105.
The Mach number is Ma = 0:3.
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Figure 10. Work-precision plots for the BDF2,

BDF3, MEBDF4, and ESDIRK4 schemes on

a NACA0012 airfoil at Re = 103; 104; 105.
The Mach number is Ma = 0:3.
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Figure 11. Variations of iterations needed

to reach termination tolerance for the BDF2,

BDF3, MEBDF4, and ESDIRK4 schemes, as

a function of time-step.

in this study (10�2 � 10�3). We speculate that
other GLM methods will exhibit trends similar to
the MEBDF4 and RK4 schemes if implemented into
the FUN2D code. It is clear that in the constant
time-stepping mode, signi�cant gains in algebraic
solver e�ciency are needed if high-order solvers are
to displace BDF2 in the FUN2D aerodynamics code.

The relative e�ciency of each temporal algorithm
is di�cult to generalize to other computer codes.
The overall e�ciency of each scheme is strongly
dependent on the pro�ciency and idiosyncrasies of
the algebraic solver! Time-step independent alge-
braic convergence rates are unlikely on realistic prob-
lems in the near future. Convergences rates vary
dramatically with solver technology. We speculate
that strong solvers will favor high-order formula-
tions, while weak solvers will favor existing low or-
der formulations (BDF2). The optimal scheme for
the development of an automated integration CFD
package remains undetermined at present.

A fundamental obstacle in the FUN2D formula-
tion is the unpredictable nature of the algebraic con-
vergence observed with all high-order formulations.
High-order schemes are plagued with poor conver-
gence behavior at large time-steps and at low error
tolerances. (Perhaps BDF2 would experience similar
di�culties if high accuracy tolerances are sought.)

The red-black Gauss-Siedel inner-iteration strat-
egy used in the FUN2D code is weak. Present
developments in the HEFSS code include a multi-
grid algorithm, with a line implicit wall nor-
mal smoother31. Published results of Mavriplis
24; 25; 26; 27; 28, indicate that these algorithms
are a notable improvement over the current
FUN2D/FUN3D algebraic solver. Additional im-
provements to HEFSS include a tight coupling of
the turbulence and 
uid equations in the solution
stage of the algorithm31.

Future work on the HEFSS code will focus on
achieving an iteration strategy that seldom fails on
problems similar in type to those used in this study.
Under-relaxation of large time-steps will be needed
to improve convergence for high-order methods. Ad-
ditional improvements for high-order schemes will
come from better use of available data. High-order
formulations must use reliable stage value predictors
to provide accurate starting guesses for every itera-
tion. For example, the MEBDF4 scheme has ex-
cellent stage value predictors for the �rst and third
stages. The work required for stages one and three
is usually less than that required for stage two in
the FUN2D implementation of MEBDF4. The ES-
DIRK4 scheme currently does not have good stage
value predictors. We conjecture that the ESDIRK4
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scheme could improve in e�ciency by a factor of
two by developing good stage value predictors for
use as the starting guess in each iteration. Good
starting value guesses become even more crucial as
larger time-steps are used. Improvements in itera-
tion convergence rates as well as improvements in
stage value predictors, will allow the HEFSS code to
utilize the full potential of high-order schemes.

The ultimate objective for the HEFSS solver is
automated control, designed around a variable time-
stepping algorithm. A broad-based controller capa-
ble of detecting divergence or slow algebraic con-
vergence will automatically adjust the time-step to
minimize the e�ects of solver di�culties. The time-
step will decrease if poor convergence is encountered
to ensure that increasing time-steps never increase
the work.

Conclusions

A comparison of four temporal integration tech-
niques is presented in the context of a general pur-
pose aerodynamics solver. The study focuses on the
temporal e�ciency of high-order schemes, relative
to the Backward Di�erentiation Formulae (BDF2)
scheme. The high order algorithms used include the
third-order BDF3 scheme, the fourth-order Modi�ed
Extended BDF (MEBDF4) scheme, and the fourth-
order Explicit, Singly Diagonally Implicit Runge-
Kutta (ESDIRK4) scheme.

Design order convergence is observed for all
schemes. Speci�cally, second-, third-, and fourth-
order accuracy for the BDF2, BDF3 and MEBDF4
schemes, while the ESDIRK4 scheme converged ini-
tially at a fourth-order rate but order reduced down
to third-order at high precisions. Tests included sim-
ulation of turbulent 
ow around a circular cylin-
der and a NACA0012 airfoil at Reynolds numbers
of Re = 103; 104; 105. Little sensitivity of the
temporal algorithms to spatial grid resolution and
Reynolds number is observed.

The work required to achieve engineering accura-
cies of two signi�cant digits was surprisingly similar
for all four temporal algorithms. With regards to
work, very little advantage is observed in going to
high-order schemes over the popular BDF2 scheme
at accuracy tolerances of 10�3. At high-precision
levels, for reasons of robustness and error estima-
tion, the MEBDF4 scheme is a possible alternative
to BDF2 in aerodynamic applications. Several rea-
sons contributed to the poor showing of the the high-
order schemes. The principle reason was poor con-
vergence characteristic of the algebraic solver when
using large time-steps.

Future work will focus on improving solver robust-
ness, and implementing extrapolation/interpolation
procedures to obtain better starting guesses for the
algebraic solves.
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